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SUMMARY

Vacuum arc remelting is a process for producing homogeneous ingots of reactive and macrosegregation-sensitive
alloys. A mathematical model of the transport phenomena in the ingot melt is presented together with a
discussion of the various simplifying assumptions and approximations that make the problem tractable, with
particular attention on transport in the interdendritic mushy zone and on the magnetohydrodynamics. The finite
element method is used to discretize the equations for the non-isothermal flow problem and the quasi-static
electromagnetic problem. Coupling of the finite element solutions for the two field problems is accomplished
using the Parallel Virtual Machine software. An analysis of the fluid flow and heat transport in the melt pool of
the solidifying ingot shows some of the factors that influence ingot quality during quasi-steady growth
conditions.# 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Vacuum arc remelting (VAR) is a process for producing homogeneous ingots of reactive alloys that
are prone to macrosegregation. The configuration of the VAR furnace is shown schematically in
Figure 1. The process is designed to melt a consumable electrode in such a way as to produce a new
ingot with better uniformity in metallurgical properties. A high current is passed through the
electrode (cathode) and produces a metal vapour plasma arc between the electrode and the melt pool
(anode) created in the water-cooled copper crucible. The plasma arc provides energy for melting the
electrode, causing molten metal to drop into the melt pool. A key to the production of high-quality
ingots is control of macrosegregation, which in turn implies control of the arc and the solidification
process in the melt pool. As part of an effort towards understanding the many factors that contribute
to the quality of VAR ingots, numerical techniques have been used to model the fluid flow, heat
transfer and melt pool shape in VAR ingots as a function of various processing strategies.

The work in this area and other related areas involving molten metal processing has an extensive
history, with the flow models becoming increasingly more sophisticated and complex. VAR-specific
applications have been developed by Bertram and Zanner1–3 and others,4,5 mainly using finite
difference=finite volume methods for the thermal or flow problem and simplified (analytic) field
descriptions for the electromagnetic problem. More general alloy solidification studies using a variety
of numerical methods are quite numerous and will not be catalogued here. Typical of this type of
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study is the work of Prescottand Incropera,6,7 Voller and coworkers8,9 and Beckermann and
Viskanta10 in developing mushyzonemodels for usein segregationsimulations.

The objectiveof the presentwork wasto develop a comprehensive andextensiblecomputational
model for the simulation of VAR processes.Becauseof the approachtaken, the resultof the work
wassomewhatmore generaland providesa broadcapability to study many types of molten metal
flows that are influenced by electromagnetic fields. Another by-product of the work was the
development of a flexible method for coupling finite element codes for use in a variety of
multiphysicsapplications. The couplingalgorithm is outlinedherebut is covered in somedetail in
Reference11.

The plan of the paperis as follows. In the next sectionsthe mathematical statement of the VAR
problem is given along with a few simplifying assumptions and approximations; the boundary
conditions and material models are also reviewed.A brief section on non-dimensionalforms is
followedby a description of thenumericalmethodandsolutionmethodsusedon eachfield problem.
A section on the coupling of the finite element codesprecedesthe discussionof severalexample
situations. The paperconcludeswith comments on other applicationsand future directions for the
proposed methodology.

2. MATHEMATICAL MODEL OF VAR

The first assumption in developing theVAR model is that theprimary interest is in the ingot portion
of theprocess(seeFigure1). Thoughthemetalvapourarcis animportantpartof theoverallprocess,
the ability andneedto model this regionarelimit ed.Thereforethe domainfor the computation will
include only the ingot and perhaps the surroundingcrucible. The needto include the crucible will
dependon the ability to realistically condensethe thermalandelectromagnetic problemswithin the

Figure 1. Schematicdiagramof vacuumarc remelting (VAR) processand typical computationalmesh.The metal vapour
plasmaarcprovidesheatto melt thecathode,which thendripsinto theingotmelt pool.Heatis extracted radially from theingot

throughthe water-cooledcoppercrucible
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crucible into boundary conditionsfor theingot.A second assumption limit s thespatial dependenceof
thefieldsto bepurelyaxisymmetric;this assumption is justifiableowing to thecylindrical symmetry
of the overall process,although small local deviations do occur. The numerical methodsare
developed as fully three-dimensional, since casesinvolving (imposed) time-dependentmagnetic
stirring in thecircumferentialdirections areof interestasaresituationswith aneccentrically located
electrode.Theexamplespresentedherearelimit edto theunstirred,two-dimensionalcase.Within the
computationaldomain thephysical processes of concern includethenon-isothermalfluid mechanics
of the melt pool, a region of non-isothermal flow in a porous medium that representsthe
interdendritic or mushy zone,solid body conduction throughthesolidified ingot andthedistribution
of the electric current (ohmic or Joule heating) and magneticfield (Lorentz force) throughout the
domain. Eachof theseprocesses will be described separately.

2.1. Melt pool

The flow and transport in the ingot melt pool are described by the incompressible form of the
Navier–Stokesequations andanaccompanying energyequation. For this applicationtheflow will be
assumed laminar, though the occurrence of turbulencemay eventually needto be considered.Also,
interest in macrosegregationprocesseswill requirethe inclusionof masstransportequations thatare
neglectedfor thesefirst studies.Usingvectornotation,therequired massandmomentumrelationsfor
the flow field are

H ? u � 0; �1�

r0
ru
@t
� u ? Hu

� �

� ÿHP � H ? �m _g� ÿ r0b�T ÿ T0�g � J � B; �2�

where the rate-of-strain tensoris definedas

_g � Hu � �Hu�T

and �Hu�T is the transpose of Hu. Energytransport in the melt pool is described by
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In writing (1)–(3), the Boussinesqapproximation was invoked to allow density variations to only
occur in the body force term. Also, the Lorentz force (J6B) was included in the momentum
equation and represents the body force due to the interaction of the electric currentand magnetic
field. Theohmic or Joule heating term �jJj2=se� wasincluded in theenergyequation asa volumetric
source and represents the electromagnetic energydissipated in the material. Note that the specific
formsadoptedfor theLorentzandJouleheatingtermsareconsistentwith thesimplified Ohm’s law12

used in high-electrical-conductivity systemsand defined in a subsequent section. The remaining
parametersin the equations aredefinedas follows: u is the velocity vector, t is the time, r0 is the
referencedensity at the reference temperatureT0, P is the pressure, T is the temperature, m is the
viscosity, b is the coefficient of thermal expansion, Cp is the specific heat, k is the thermal
conductivity, se is the electric conductivity andg is the gravitational vector.

2.2. Mushyzone

The interdendritic region between the melt pool and the solidified ingot is modelled using a
Brinkman–Darcymodelfor flow in a porousmedium. This follows current theory andpractice6–10,13

in approximating thedendritestructureasaneffective(anisotropic) porouslayerwith a permeability
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that varies from zero at the solidus temperature to infinity at the liquidus temperature.The fluid
motion in the porouslayer is describedby

H ? u � 0; �4�

r0

f

@u
@t
�

r0

f
2 u ? Hu � ÿHP � H ? �mB _g� ÿ

m

k

� �

u ÿ r0b�T ÿ T0�g � J � B: �5�

If local thermal equilibrium between the interdendritic fluid andthe porousmatrix is assumed, then
the effectiveenergyequation for the porousregion is

�r0Ce
p�
@T

@t
� �r0Cf

p�u ? HT � H ? �ke
HT� �

1
se
jJj2: �6�

In equations(4)–(6), u is thevolume-averagedvelocity vector(superficial or Darcyvelocity), P is the
volume-averagedpressure,f is theporosity (liquid volumefraction) of theporousmedium, k is the
permeability andmB is theBrinkman,or effectiveviscosity.Thesuperscript ‘e’ indicatesaneffective
property and the superscript ‘f’ denotesa fluid value; all other symbols retain their previous
definitions. The effective properties (including the electric conductivity) are usually porosity-
weighted averagesof matrix and fluid properties. Equations (4)–(6) represent a significant
generalization of the standard Darcy model for non-isothermalflow in a saturated porousmedium.
Notethat theinclusionof theadvective transport andstresstermsin (5) permits thesmoothtransition
from the flow in the melt pool to the flow in the mushyzone.This transition is controlled by the
variation in material properties suchas permeability which dependon the field variables suchas
temperature.The transition from the mushy zone to the solid ingot is also controlled by material
property variations that asymptotically approachsolid values as the porosity goes to zero. The
problemsandissuesassociatedwith coupling theaboveporousflow modelwith a viscousflow in an
adjoining region(melt pool) weredescribedandstudiedby Gartling et al.;13 themethodsdeveloped
therehavebeenadoptedfor the presentapplication.

2.3. Solidifiedingot

After solidificationthemotion of theingot becomesa simple solid bodytranslationwith a velocity
defined by the global massbalance. The use of a Eulerian co-ordinate systemimplies that the
advective partof theenergy equation is still required. Thustheonly equation neededfor this regionis
(3) with aknown velocity. As apractical matterwith respectto numericalimplementation,this region
is actually treatedasafluid with avery largeviscosity; equations(1)–(3) areusedfor this region.The
largeviscosity producesthe requiredeffect of solid body motion with the correctenergy transport.

2.4. Electromagnetic fields

Therelevant electromagnetic problemin theingot is describedby a quasi-static form of Maxwell’s
equations.12,14,15In rationalMKSA notation theseequationsmaybewritten for aconductive material
as

H� E � ÿ

@B
@t

; �7�

H� H � J; �8�

H ? B � 0; �9�
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where the vectorfield variablesarethe electric field intensity E, the magnetic field intensity H, the
magnetic flux densityB andthe conduction currentdensityJ. A continuity condition on the current
density is alsodefinedby

H ? J � 0: �10�

To complete the formulation, the constitutive relationsfor the material arerequired. The fluxesare
related to the field variablesby

B � m0mrH � mmH or H � n0nrB � nmB; �11�

J � seE �12�

where mm is the magnetic permeability, nm is the magnetic reluctivity and se is the electric
conductivity. In equations (11) and (12) the subscripts ‘r’ and ‘0’ on the material coefficients
representrelativeandbase(or free space) valuesrespectively. Note alsothat in general the material
propertiesaretensorialin nature andmaybefield-dependentandanisotropic; someproperty relations
may also exhibit hysteresiseffects. Ohm’s law (12) hasbeenwritten in a simplified form12 which
neglectselectric currentsdueto themotion of theconductive material. This is a good approximation
for thehigh conductivity andlow fluid velocities foundin VAR. Theaboveequationshavealsobeen
written for the caseof small magnetic Reynolds number,12,14 which is defined as Rem � ULsemm,
where U is a typical fluid velocity andL is a representative length scalefor the flow domain.The
magnetic Reynolds numberrepresents a ratio of magnetic convectionto magnetic diffusion andfor
small valuesof Rem the convective transport of the magnetic field may be neglected.For VAR a
typical magnetic Reynoldsnumber is Rem � 0�04 andconvection of the B-field may be neglected;
this approximation decouples the magnetic field from the fluid velocity field.

For use in numerical computation it is usual to rewrite the abovesystemin terms of potential
functions and therebyreduce the number of equations that must be solved.From equation (9) it
follows that B is derivablefrom a vectorpotential14 andthus

B � H� A; �13�

where A is the magnetic vectorpotential. In addition, from equation (7) it canbe shownthat14

E � ÿHV ÿ

@A
@t

; �14�

where V is the electric scalarpotential. Using thesetwo definitions and the relevant constitutive
relations, equations (8) and(10) become

H� �nmH� A� � J � seE � ÿseHV ÿ se
@A
@t

; �15�

H ?

�

ÿ seHV ÿ se
@A
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�

� 0: �16�

Thesetwo equations provide the needed description for the electric andmagnetic fields in the VAR
problemandother magnetically drivenflows. For thenominally time-independentDC currentsfound
in VAR the time derivatives in (15) and (16) are eliminatedand the equationsmay be solved in
sequence with the electric potential equation (16) considered first. With known valuesof V the
currentdensitiesin theregionmaybefoundfrom (14) and(12).Usingthecurrentdensity asa known
source, equation (15) may then be solved for the magnetic potential and subsequently for the
magneticflux B. However,theultimate quantities of interest aretheJoule heatingandLorentzforces
defined in (2) and (3). The electric and magnetic fields are present throughoutthe ingot and the
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electric conductivity and magnetic permeability are necessarilyfunctionsof the material state(i.e.
solidor liquid) andtemperature.This dependenceleadsto thetwo-waycoupling of thefield problems
andprovidesoneof the major difficulties for this type of simulation.

For other applications with time-harmonic electromagnetic fields, suchaselectroslagmelting and
inductive melting, a phasorrepresentation of the field variables is appropriate. This leads to a
simplification of the time derivative terms in (15) and (16) but adds the difficulty of complex
coefficients and variables within the equations.15 Also, in some situations an additional gauge
constraint suchasH ? A � 0 mustbeplacedon equations(15) and(16). This ensurestheuniqueness
of A, sincethe unconstrained formulation only ensuresthatH� A is unique. This constraint is not
required in the present casebecausethe derived quantities of interest, namelythe Lorentzforce and
Joule heating, dependonly on the curl of the potential.

2.5. Material models

Alloy solidificationis a complex processandthematerial models usedin thenumerical algorithm
arecritical to realistic andaccuratesimulations.In somecases accurateproperty informationis not
available(e.g.moltenmetaldata)owing to measurementdifficulties.Assumptionsandlimit ationsfor
the VAR property descriptions areoutlined here.

Thedensityof thematerialis assumedconstantthroughoutthedomainandall variations in density
due to solidification are neglected. The latent heat of fusion is accounted for via an enthalpy
method,16 wherethe specific heatis a temperature-dependentfunction given by

Cp�T� �

Cs
p; T < Tsol;

Ce
p � DH0

f =�Tliq ÿ Tsol�; Tsol < T < Tliq;

Cf
p; Tliq < T ;

8

>
>
<

>
>
:

�17�

where Tliq and Tsol are the liquidus and solidus temperatures. The enthalpy releasedduring
solidification,DH0

f , is approximatedby assuming it to beauniformly distributedoverthetemperature
rangeof solidification,Tliq ÿ Tsol. Thebasevaluesof specificheat,Cf

p;Cs
p andCe

p, correspondto fluid,
solid and effective values respectively. Each base value may be an independent function of
temperature,if required, andthe effectivevaluefor the mushy zoneis determinedfrom the mixture
rule Ce

p � fCf
p � �1 ÿ f�Cs

p, wheref is the local porosityor liquid volume fraction.
The thermalconductivityis temperature-dependentin both thesolid andthefluid; theeffectiveor

mushy zonevalue is aporosity-weightedfunctionsimilar to theform shownfor thespecificheat.The
thermal expansion coefficient maybe temperature-dependentwithin thefluid andmushy zonebut is
set to zeroat the solidustemperature.The electric andmagnetic properties se andnm aregenerally
temperature-dependentin both the fluid andsolid regionswhen suchdataareavailable. The mushy
zoneagainusesa porosity-weightedvalue for both electric conductivity andmagnetic reluctivity.

Two viscositieshave beendefinedin the basic equations, the standardfluid viscosity and the
Brinkman viscosity for the porous layer. Owing to the absence of any experimental data and
recognizing that the Brinkman viscosity must approachthe fluid viscosity at the edgeof the melt
pool, the two viscositieshave beenset equal in the presentmodel. The viscosity is taken to be a
strong function of temperature (either linear or exponential) betweenthe liquidus and solidus
temperatures.At the solidustemperaturethe viscosity is typically setat a value 105–1010 times the
liquidus value,effectively immobilizing the ‘fluid ’. Otherviscosity models that dependon the local
porosity17 could also be usedbut have not yet beeninvestigated.In concert with the changein
viscosity acrossthe mushyzonea variation in porouslayer permeability andporosity is evaluated.
The permeability for a dendrite layer is anisotropic with the principal directions for the tensor
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oriented normal and tangent to the local isotherm, assuming steady solidification. Following
Poirier,18 the principal componentsof the permeability tensor may be described by

kn �
mnf

3

�1 ÿ f�
2 ; kt �

mtf
3

�1 ÿ f�
3=4 ; �18�

where mn and mt are morphology coefficients that dependon the dendritestructure, that is. the
primary andsecondary dendrite arm spacings. The subscripts ‘n’ and ‘t’ refer to directions normal
and tangent to an isotherm. Equation (18) is similar to the standard Carmen–Kozeny relation for
permeability asa function of porosity in general porousmaterials.The remaining relationshipneeded
to close thematerial models is thedependenceof porosityon temperature. Severalpossibilities exist,
including a simplelinear relationor the more complex Scheil equation19 andrelatedtreatmentsthat
account for solute redistribution. To be consistent with the latent heat release, the presentmodel
employs the simplified linear relation

f �

T ÿ Tsol

Tliq ÿ Tsol
: �19�

2.6. Boundaryconditions

Theboundary conditionsadoptedfor theVAR modelconnect thecomputationalregionto theparts
of the physical processthat have been removedfrom consideration. A number of assumptions
accompanytheseconditions,aswill be explainedin the following.

Referring to Figure 2, the upperboundary of the ingot is a free surfaceacrosswhich mass and
energy aretransportedvia intermittentdropletscomingfrom random locationsbeneaththeelectrode.
Thefluid inflow boundary conditionis setby theaveragespecified melt rate,thoughtheactual inflow
distribution is not known. Under a quasi-steady melting assumption the inflow is distributed
uniformly over the top of the ingot. This assumedspatial distribution is not viewedascritical, since
the inflow velocity is small (� 1075 m s71) compared with the motion within the melt pool
(� 1072 m s71). The upper surfaceis also assumedto be shear-free, which neglects Marangoni
forcesdueto surfacetensiongradientscaused by temperatureand=or solutevariationson thesurface.
Dataon surfacetensionat elevatedtemperaturesaresparse;this effectcouldbeeasily included for a
flat freesurfaceandwith somewhatmoredifficulty for a deformedfreeboundary. Along thecrucible
boundary the fluid=solid moveswith a vertical velocity given by the melt rate.At outflow the flow
condition is a constantnormal traction and zero radial velocity. Theseconditionsare somewhat
artificial, in the sensethat the growth of a VAR ingot is inherently a time-dependentbatchprocess.
The top boundaryof theingot moves upwardsasa slowly increasing function of time andthebottom
boundaryposition remainsfixedat thebaseplate.However, from anumerical modelling perspective it
is moreconvenient to invoke thequasi-steadyapproximationonaEulerian grid andallow theingot to
move throughthe domain. This approximation is reasonablefor the latter stagesof ingot growth,
when theingot lengthhasreachedseveralingot diametersandthegrowthratehasbeenheldconstant
for several thermal diffusion timesbasedon ingot radius.This approachis similar to the processof
continuouscasting.

Thermalboundaryconditionsfor the ingot, which areillustratedin Figure3, arethemost difficult
and involve the mostapproximation. Over the top surfaceof the ingot the net heatflux is specified
with anassumedradialdistribution. Theassumedprofile is a constantflux from thecentrelineof the
ingot to a radiusthat is equalto theelectroderadius;theflux decreaseslinearly from theedgeof the
electrodeto the cruciblewall. Energyis input to the melt pool surfacefrom the plasma via several
mechanisms, themost importantbeing theadvectiveflux of heatcontainedin thesuperheatedmolten
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metaldroplets falling from the electrodeandthe heatflux dueto electronsfrom the plasmastriking
themelt poolsurface.Overall energybudgets for theprocesshavebeenperformed2 usinginformation
from the input electrical powerandtheheatcarriedawayby thecoolingwater. Theseglobal energy
balancessuggestthat 50%–90% of the electrical powerentersthe melt pool surfacein oneform or
another,with theexactamount depending on thematerial beingmelted,thesizeof the ingot andthe
operating conditions.In thepresentmodel thenetheatflux boundary condition is partitionedinto two
components.A convective condition is usedto representthe energy dueto the droplet inflow anda
specified flux accounts for the energyfrom the plasma.Oneof the major unknownsin this model is
theplasmaflux, thoughits magnitudecanbebounded. Thesetwo effectswereseparatedto aid in the
control of the solutionprocess.

As the ingot solidifies, it shrinksin diameterandeventually separatesfrom thecrucible, leavinga
shrinkagegapthatmayor maynot befilled with aninert gas.The thermal resistance alongtheingot-
crucible interface is therefore quite variable and is simulated with a heat transfercoefficient that
varieswith temperatureandaxial location. Above theseparation point thecontactbetween ingot and
crucible is assumedto bevery goodandtheheattransfer coefficient is quite high. Below separation
the heat transfer coefficient is basedon conduction through a gaslayer, if it exists, and radiation
between concentric cylinders. The point of separationis setby specifying the temperatureTshrink at
which shrinkage occurs; the transition from one heat transfercoefficient to anotheroccurs over a
temperatureinterval centred on Tshrink. The shrink temperature is usuallysetwell below the solidus
temperature, though a reliable value for this parameter is not known. Consideration of the solid
mechanics responseof the ingot could eliminate the need for this type of parametrization. The

Figure2. Flow boundaryconditionsfor VAR. Molten metaldropletsfrom the electrodefall into the melt pool, providing a
temporallyandspaticallyaveragedinflow. Solidified materialalongthe ingot–crucible boundaryandat the bottomtranslates

with the velocity given by the melt rate
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thermal boundaryconditionat thebottomof thecomputationaldomainis theusualoutflow condition
of a zeroconductive heatflux; the convectiveflux is left unconstrained.

The real electromagnetic environment during a VAR process is quite complex but can be
simplified considerablyfor thepurpose of modelling thefluid flow andheattransfer in themelt pool.
The averagecurrent signal is DC, but superimposedupon this basic DC signal are fluctuations
governedby thedynamicsof theplasma, thecathodespotsandtheoccasional dropshorteningevents
during low-currentmelting. Thesephenomenaall contributeto a currentflux distribution on theingot
melt pool surfacethatvariesin time andspace. Fortunately,it is only theaveragetemporalbehaviour
of thecurrentthatneedsto be takeninto account; thedetails of theelectrical signaturethatoccuron
time scalesfasterthanthe time scalesfor thermal andmomentum transport in the melt pool canbe
averagedto a goodapproximation.

Theelectric andmagneticboundary conditionsaresketchedin Figure4. On the top surfaceof the
ingot melt pool the electric currentdistribution is assumedto be of the form

Jz�r� � seHV �

Ip

2pR2
j1
0

J0�j
1
0r=R�

J
1
�j01�

; �20�

where Ip is the input current, R is the radiusof the ingot, J0 andJ1 areBesselfunctionsandj10 is the
first root of the Bessel function J0. This distribution is physically reasonableand provides the
simplest analytic solution to Laplace’s equation (Ohm’s law) on the cylindrical (ingot) domain.20

Though the distribution in (20) corresponds to a simplified problem (no property variation and
constantsidewall boundary conditions), it doesprovidea usefulelectrical boundary conditionfor the

Figure3. Thermalboundaryconditions for VAR. Heat is input from the metalvapourarc andthe superheated moltenmetal
dropletsfrom theelectrode.Theingot–crucible heattransfercoefficientis high wherecontactis goodandis low aftertheingot

separatesfrom the crucible
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numerical simulation. The analytic solution for the caseof a grounded sidewall and bottom also
providesacheckfor theelectromagnetic portion of thenumerical algorith.Thoughtheoverall current
for the VAR process is known, the fraction of the current that actually passesthrough the ingot is
somewhatuncertainandis a function of theoperatingconditions.TheparameterIp is specifiedfor the
present modelbut could be removedasa variablewith a morecomplete electromagnetic simulation
that included the electrode,arc and lossesto the crucible wall abovethe ingot.

Theelectrical boundaryconditionson thesidewallandon thebottom of thecomputationaldomain
areinitial ly takento beV � 0. The groundedbottomboundaryconditionfor the ingot is reasonable,
since electrical contactis generally goodat thecopperstool plate.However,this boundary condition
is approximate,becausethebottomof thecomputationaldomain doesnot coincidewith the location
of the stool. On the ingot–crucible boundary,abovethe shrinkageseparationpoint, goodelectrical
contact is expected andthe grounded boundaryconditionis appropriate.Below the separation point
an electrically insulatedcondition@V=@n � 0 is moreappropriateand is usedin some simulations.
Note that evenwith a ground-type boundary alongthe entiresidewall morethan90%of the current
passes to the crucible sidewall in the top ingot diameterand the currentflux to the crucible in the
shrinkage gap region is small. There is a significant difference between these two boundary
conditions only when the separation point is close to the top of the ingot. The location of the
separation point and the change in boundary condition are part of the data supplied to the
electromagnetics codefrom theflow analysis.The magnetic boundary conditionsareseton theradial
andaxial componentsof themagneticpotential; only theaxial andradialcomponentsof A existwhen
thecurrentis confinedto the(r; z) planeandthegeometryis axisymmetric.Theradialcomponentof

Figure4. Electricalboundary conditionsfor VAR. Thecurrentflux distributionat themelt pool surfaceis specified.Theingot–
crucibleboundaryis groundedwherecontactis goodandis insulatedaftertheingot separatesfrom thecrucible.Thebottomof

the ingot is grounded
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A is zeroon thetop andbottom of theingot andtheaxial componentis zeroon theoutsideboundary
of the ingot. The axial componenton the top andbottom surfacesandthe radial componenton the
outside boundarywereleft unconstrained,with naturalboundaryconditionsbeingimplied. Theseare
approximations for an unbounded magnetic flux problem14 andarereasonableaspassiveboundary
conditions for the ingot.

2.7. Non-dimensionalequations

Natural convection problemsdrivenby a combination of thermal buoyancyandLorentzforcesare
difficult to simulatenumerically becauseof the largebut opposingvaluesof the force contributions.
The presenceof a melt zonealso complicatesthe solution process,especially when a steadyflow
solution algorithm is used.It is oftenadvantageousto non-dimensionalize thefield equationsanduse
the critical non-dimensional parametersto help in the control of the solutionprocess.

In thepresentwork the transportequations for themelt pool (1)–(6) werenon-dimensionalized to
produce the system

H ? u* � 0; �21�

@u*
@t*

� u* ? Hu* � ÿHP* �
1

p

�Gr0�
H ? �m* _g*� ÿ

1
p
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� �
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0
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�22�
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� �

�

1
p

�Gr0�Pr0
H ? �k*HY*� �

Jo0
p

�Gr0�Pr0
jJ*j2; �23�

where thesuperscript ‘*’ now indicatesa non-dimensionalvariableor functionandtheH is alsonon-
dimensional. The melt pool and mushyzoneequations havebeencombined to produce(21)–(23),
with thematerial property functionsnow definedsuchthat theyarevalid throughoutbothregions.To
arrive at (21)–(23),the primary variableswerescaled according to

x* � x*=R; u* � u=U ; t* � tU=R;
�24�

Y* � �T ÿ T0�=DT ; J* � J=J0; B* � B=B0;

where R is the ingot radius, the velocity scaleU �

p

�gb0DTR� is a buoyancy velocity and the
temperaturescaleis DT � Tliq ÿ Tsol, with a referencetemperatureT0 �

1
2 �Tliq � Tsol�. The variable

material propertiesarenormalizedby referencevaluesevaluatedat T0. Theelectromagnetic variables
arescaledby B0 � mmJ0R andJ0 � Itotal=pR2, where Itotal is the total input current to the ingot.

The non-dimensional parametersthat occur in (21)–(23) are defined as the Prandtl number
Pr0 � m0Cp0

=k0, the Grashof number Gr0 � r2gb0DTR3
=m2

0, the Darcy number Da0 � k0=R2, a
magnetic Prandtl number Prm � r0mmse=m0, the Hartman number Ha2

0 � B2
0R2se=m0 and a Joule

heating number Jo0 � J 2
0 R2

=sek0DT . Once the ingot material is selected,nominalvaluesfor several
of theseparameterscanbedetermined.Theremaining parameterssuchasHa2

0 andJo0 dependon the
processingconditions.Representativevaluesfor thenon-dimensionalparameterswill begivenduring
the discussionof the ingot simulations.The Grashofand Hartmannumbers were identified as the
primary control parameters for the simulation since they provide the relative influence of the
buoyancyandLorentz forces.Theseparameterswereusedto assist in incrementallyadvancing the
solution processto the desired, time-independent, flow state.

Boundaryconditions for the non-isothermalflow problemwerealsomade non-dimensionalwith
the scalings listed in (24). The specified inflow velocity becomesu*in � uin=U � Pe=

p

�Gr0�Pr0,
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where thePecletnumber is uinL=a0 anda0 is thethermal diffusivity. Theheatflux overthetop of the
ingot transformsto a Biot number distribution qz*�r*� � Biz�r*� � qin�r�R=k0DT where qin is theheat
flux due to the plasma. The convective flux over the top of the ingot can be written as
qz*�r*� � Biz�r*��Y* ÿYl*�, whereBiz � hz�r�R=k0;Yl* is the liquidus temperatureand hz depends
on themelt rate.The heattransfer alongthe ingot–crucible boundary wasscaledin a similar manner
to produceqr*�z*� � Bir�z*��Y* ÿYw* �, with Bir � hr�z�R=k0: Yw* is the cooling water temperature.

Theelectromagnetic equationscould alsohavebeenreducedto a non-dimensionalform. However,
therewasno apparentadvantagein this typeof scaling, since theequationswerelinearandcouldbe
solved without iteration. The important effects from the electromagnetics come from the derived
variablesandthesewere scaledafter they hadbeencommunicatedto the flow code.

3. NUMERICAL METHOD

The coupled fluid mechanicsand electromagnetic problem outlined in the previoussectionswas
converted to a discretecomputational form through theuseof a Galerkin-basedmethodof weighted
residuals (MWR) anda finite elementapproximation. Becausetheflow andelectromagneticsolution
schemesweredevelopedseparately, they will be described individually.

3.1. Incompressibilityflow algorithm

The numerical solutionto the non-isothermalflow problem in the ingot wascarriedout using the
codeNACHOS II,21 which is basedon a mixed finite element method.The formulation usesthe
primitive variableform of theequationsasshownin (1)–(3) andincludes thecapabilityof transition
to the Darcy–Brinkmanequationsgiven in (4)–(6). The development of the finite element equations
corresponding to (1)–(6) is adequately treated elsewhere13,21–23andwill only be summarizedhere.

The finite elementequations resultingfrom the GalerkinMWR canbe written in matrix form as

ÿQTU � 0; �25�

M _U � CU � AU ÿ QP � KU � BT � F; �26�

N _T � DT � LT � G: �27�

The vectorsU, P andT representthe discrete(nodal) velocity, pressureandtemperaturefields.The
matricesare the discreteforms of the termsshownin (1)–(6), with M and N being the massand
capacitancematrices, C and D the advectionterms,K and L the diffusion operators,A the Darcy
term,Q andQT thegradientanddivergenceoperatorsandB thebodyforce term.The vectorsF and
G representthesurfacestresses,applied fluxesandvolumetricsourcesfor thedomain, including the
Joule heating andLorentz forcesfrom the electromagnetic fields.

Theelement-level interpolationfunctionsusedin thepresentwork consistedof quadratic Lagrange
functions for the velocity andtemperatureandlinear discontinuouspressureapproximations. Time-
dependent problemsare solved using an implicit predictor–corrector (Adams–Bashforth, trapezoid
rule) algorithm with adaptive time step control. Time-independent solutions were solved with a
Picard or Newton iteration method; zeroth-order continuation was used to reach solutions with
significant convection. All the solution methodssolvedthe equations in a fully coupledmanner and
useda direct solver for the resultinglinearalgebra problem.
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3.2. Electromagnetic algorithm

Theelectromagneticfieldsfor theVAR problemwere computed using theTOROII code,24 which
is basedon the electric scalarandmagnetic vector potential form of Mawell’s equations.The code
was designedto simulate a variety of electromagnetic problems, including electrostatics, steady
currentflowsandeddycurrents.Thequasi-steadyVAR applicationis a magnetostaticproblemthat is
described by a reducedform of (15) and(16). That is,

H� �nmH� A� � J � ÿseHV ; �28�

ÿH ? �seHV � � 0: �29�

The finite element equationsresulting from the Galerkin MWR usedon (28) and (29) can be
written in matrix form as

~KA �
~G �

~GJ; �30�

~LV �
~F: �31�

In equations(30) and(31) thevectorsV andA representthenodalvaluesof theelectricpotentialand
the componentsof the magnetic vector potential; two components,Ar and Az, exist for the VAR
problem.The operator~L is theweak form of theLaplacianandK is theweakform of thedouble curl
operator. The vectors ~F and ~G containboundaryconditions for the current flow andmagnetic flux;
the vector ~GJ representsthe current sourcesderived from the gradientof the electric potential.

Equations (30) and(31) aredecoupled and,asnotedpreviously, may besolvedsequentially, with
the electric field being processed first. For VAR applications the equations are linear, though the
material propertiescontainedin L and ~K are temperature-dependent.Solution of the linear matrix
problemsassociatedwith (30) and(31) wasaccomplishedwith a preconditionedconjugategradient
iterative method.The element-level interpolative functions usedin the presentwork consisted of
quadratic Lagrangefunctionsfor the potentials.The JouleheatingandLorentz forcesneeded in the
flow simulationarecomputed from derivativesof thepotentialsevaluatedat theintegrationpointsof
eachelement.

3.3. Couplingalgorithm

As is evident from the VAR problem, there is often a need to couple two or more solution
processes(computercodes) in orderto simulate a complex multiphysics problem. In many previous
cases this typeof requirement hasled to thedevelopmentof a fully integratedcodethatcontainedall
the necessary mechanicsfor a specificapplication.This approachis time-consuming andexpensive,
with the endproductoften lacking the flexibility or generality for other applications.It is generally
very difficult to anticipatethe extent and types of coupling that may occur in a wide variety of
mechanicsapplications.

The solution arrived at for the VAR problem is quite generaland makesuseof well-developed
software libraries. In essence the codes are coupled using a data exchangemethod under a
master=slave paradigm.In the VAR example the flow solution is the masterprocess,since the flow
dictatesthemajor time andlengthscalesfor thesimulation; theelectromagnetic solutionis theslave
process since it simply provides ‘load’ data when needed or requested. Since this relationship
between flow and electromagnetics may not hold in other types of simulations, both codeswere
designedto function aseithera master or slave process.At given intervalsin the solutionsequence
themaster proceduredecidesthatnewdataareneeded from theslaveprocess.The masterthensends
any neededfields (e.g. temperature, material state)to the slave and waits for a reply. The slave

FE SIMULATION OF VACUUM ARC REMELTING 1283

# 1997by JohnWiley & Sons,Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1271–1289(1997)



computesa new field solution using the new data, sendsthe requested data (e.g. Joule heating,
Lorentz forces)backto the masterandwaits for anotherrequest.The major requirement for sucha
dataexchangetype of coupling is the ability to control code(processor)-to-code (processor)data
transfersin a continuous andseamlessmanner.The message-passingutilities developedfor parallel
processingenvironments providesucha capability. In the presentcasethe Parallel Virtual Machine
(PVM) software25 was utili zed, through other comparable productssuch as the Message-Passing
Interface(MPI)26 could havebeenused.Theoveralldataexchangeprocesscanbedevelopedto make
allowancesfor the useof different computational meshesfor the master and slave solutions. This
requires that a mesh-to-meshtranslatorbe inserted between the mechanicscodes, but this is still
easily accommodated through the PVM software. For time-dependentproblems any inherent
differencesin time scalebetween themechanicsphenomenacanbetreatedthroughsubcyclingof one
of the solutions.Thoughthis type of couplingmethodhasgreatapplicability, particularly for VAR
applications,it is not without somedrawbacks. Most notable is thedegradedconvergencebehaviour
for strongly coupled,non-linearphysicalsystems.Full details of the proposed exchangemethod,its
strengths and limitations andits implementationareprovidedin Reference11.

4. EXAMPLE SIMULATIONS

The algorithm outlined in the previoussectionshasbeenusedto studya number of VAR problems
involving a uranium–niobium alloy (U–6 wt.% Nb). This alloy was selectedbecause of its strong
tendency for macrosegregation and the extensiveexperimental results that areavailable3,27,28 for a
variety of processingconditions.Prior to attempting fully coupledsimulations of the VAR process,
several simpler caseswere analysedto verify the flow andelectromagnetic solutions anddetermine
appropriatemeshdensities.

4.1. Preliminary simulations

TheNACHOSII codeusedin this studyhasbeenpreviously testedon a wide variety of isothermal
and non-isothermal flow problems, including benchmark computations.29,30 Though the basic
accuracyof thecodehasbeendemonstrated,thequestion of meshadequacyandmesh independence
alwaysarisefor new applications.In the presentwork a simplified VAR problem wasusedto test
several grid refinementsbeforeproceeding with full simulations.An axisymmetriccylindrical region
wasmeshedwith threeincreasingly refinedgridsof nine-nodefinite elements.Grids1, 2 and3 were
defined by mesh densitiesof 10640, 20680 and206120.Othermorerefinedgrids weretested
but producedno furtherchanges in thesolution andarenot reportedhere.In eachcasetheupperthird
of thecylinder containedat leasthalf of theelements, sincethis regioncontainsall of themelt pool.
At low power inputs the mesh was uniform in the radial direction and biasedtowardsthe upper
surfaceof the ingot. Higher power inputs required that the meshalso be biasedtowards the outer
surfaceof the ingot, sincethe melt pool hasa larger radial extent.

The flow problem consistedof a melt pool driven by thermal buoyancy forcesonly; no Lorentz
forceswere included in these tests.The melt pool did include the mushy zoneasmodelled by the
Darcy–Brinkmanequationsfor all therelevant material propertydependencesoutlinedpreviously. A
setof typical VAR parametersfor the U–6 wt.% Nb alloy is given in Table I. Converged solutions
for two input heatflux levelswereobtainedon eachgrid. The flux levels wereselectedarbitrarily to
produce melt pools of different sizes. The solution procedure used an incrementation and
continuationstrategywith theGrashofnumber asa parameter.At eachvalueof theGrashofnumber,
various combinations of Picard and Newton iteration were employed to obtain a solution. A
relaxation parameter wassometimesrequiredto assist convergence.Also, theseparation point for the
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ingot was fixed for thesecases, which helped improve the iterative convergence.Because Lorentz
forceswerenot included to counterbalancethebuoyancy forces,thefull valueof theGrashofnumber
could not be reached.The grid tests wereperformed at a Grashofnumber of 1�36105.

Shownin TableII aremaximumandminimumnodalpoint valuesfor severalvariablesobtained on
the variousgrids. The approach to a mesh-independent solution is clear. The differences between
meshes 2 and 3 are generally less than 3�5%, except for the derivative (heat flux) valueswhich
converge more slowly with meshrefinement.Mesh2 wasadopted for most of the subsequentruns
since it showedgoodaccuracy andwassomewhatlesscostly.

The meshrefinement test also provides some insight into the basic flow characteristics to be
expectedfrom theVAR simulations.Shownin Plates1 and2 arecontourplotsof thestreamfunction
and temperature fields for the two heatflux levels. Superimposedon eachstreamfunction plot is a
shaded bandthat spansthe liquidus andsoliduscontoursanddefinesthe extentof the mushy zone.
The convective cell rotates clockwise, transferring energy from the incoming metal near the
centrelineto theedgeof themelt pool andsubsequentlyto theboundaryof theingot.Theconvection
at the lower flux valuesis still relatively weak,sincethe isothermsareconduction-like in shape.The
isotherms for the higher-flux case are clearly altered by the flow and have a more stratified
appearance.At theingot boundary theshapeof theisothermsis influencedby thechangein boundary
condition at the ingot shrinkage (separation) point. Though these solutions show trends in the

Table I. Material properties and VAR processing parameters for
U–6wt.%Nb alloy

Material property Value Units

Density 1�566 104 kg mÿ3

Specificheat 200�0 J kgÿ1 Kÿ1

Thermalconductivity 30�0 J mÿ1 sÿ1 Kÿ1

Viscosity 5�06 10ÿ3 kg mÿ1 sÿ1

Thermalexpansion 7�46 10ÿ5 Kÿ1

Latentheat 8�06 104 J kgÿ1

Liquidus temperature 1605�5 K
Solidustemperature 1440�0 K
Intrinsic permeability 1�06 10ÿ8 m2

Electric conductivity 1�56 106
O
ÿ1 mÿ1

Magneticpermeability 4p610ÿ7 H mÿ1

Processingparameter Value Units

Current 6�0 kA
Power 168�0 kW
Efficienty 0�53
Melt rate 740�0 kg hÿ1

Ingot radius 0�1042(4�1) m (in)
Electroderadius 0�0780(3�1) m (in)

Non-dimensionalparameter Definition Value

Pr0 m0Cp0
=k0 0�033

Gr0 r2gb0DTR3
=m2

0 1�36109

Da0 k0=R2 9�2610ÿ9

Prm r0mmse=m0 6�0610ÿ7

Ha2
0 B2

0R2se=m0 1723�1
Jo0 J 2

0 R2
=se=k0DT 4�5610ÿ2
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simulation, they arenot realistic owing to the absence of the Lorentz forcesand the unrealistically
high temperaturesthat arepredicted on the surfaceof the melt pool.

Theelectromagnetic solution algorithmasimplementedin theTOROII codewasalsoverified for
accuracy before being coupled to the flow problem. Mesh refinement studies like thosereported
abovewere carried out for a simplified magnetostaticproblem. This problemalso hasan analytic
solution, which simplifies the evaluationof accuracy for the numericalsolution. The problemagain
consists of a cylindrical ingot with the electric current densityspecifiedover the top surface. The
lateral andbottomsurfaces of the regionaregrounded with a zeroelectric potential. As reported in
Reference20, the current J andmagnetic flux B canbe obtained throughout the region; the spatial
distribution of the Jouleheatingandthe componentsof the Lorentz force thenfollow directly. The
numerical solution to this problemwasgeneratedon mesh 2 with constantmaterialproperties.Two
types of numericalsolution were usedin the evaluation. In the first case, labelled V ;Ar;Az, the
electric potential field within the ingot was computed basedon the specified current flux at the
boundary. The current densities from this solution were then used as source terms for the
magnetostatic field computation. A second solutionmethod,labeled Ar;Az, usedtheanalyticsolution
to providethecurrentdensitiesfor themagneticfield; theelectricpotentialwasnotcomputed. Shown
in Table III are a number of quantities that illustrate the quality of the numerical simulations.
Alterationsin the mesh densityhad a relatively small effect on the solution, sincethis problemis
madeupof aseriesof lineardiffusion equationsthataregenerally undemandingwith respectto mesh
refinement.

4.2. VARsimulations

Following the selectionof an adequatemesh,severalcoupledVAR simulationswerecompleted.
The problem of interest considered most of the conditions describedin the individual flow and

Table II. Meshconvergenceof flow solutionfor two power inputs

Low flux level

Mesh1 (10640) Mesh2 (20680) Mesh3 (206120)

Maximumc* ÿ4�3636 10ÿ3
ÿ7�7516 10ÿ3

ÿ8�576610ÿ3

Maximum u* 0�2685 0�3676 0�3878
Minimum u* ÿ0�1661 ÿ0�2363 ÿ0�2400
Maximum v* 0�1134 0�1340 0�1381
Minimum v* ÿ0�1125 ÿ0�1412 ÿ0�1539
MaximumY * 5�607 5�443 5�388
Maximum qx* 2�543 2�572 2�767
Maximum qy* 1�473 2�392 2�859

High flux level

Field variable Mesh1 (10640) Mesh2 (20680) Mesh3 (206120)

Maximumc* ÿ9�3706 10ÿ2
ÿ11�920610ÿ3

ÿ11�920610ÿ3

Maximum u* 1�022 1�340 1�307
Minimum u* ÿ1�025 ÿ1�139 ÿ1�125
Maximum v* 0�673 0�802 0�798
Minimum v* ÿ1�261 ÿ1�856 ÿ1�794
MaximumY * 26�48 24�46 24�38
Maximum qx* 12�56 13�56 13�52
Maximum qy* 6�128 9�824 11�79
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electromagnetic solutions of the previoussection. The ingot materialwasa U–6 wt.% Nb alloy that
was nominally processed at a current of 6 kA and a melt rate of 740 kg hr71. A seriesof three
computationswascompletedwith thefractionof total currentpassing throughtheingot providingthe
controlling independent variable for the simulations. Current fractions of 60% (3�60 kA), 71%
(4�25 kA) and 85% (5�10 kA) were selected, with all other parameters remaining fixed. The
separationpoint wascharacterizedby a shrink temperatureof 800 K. Theseexampleswereintended
to demonstrate the viability of the methodfor realistic processingconditions; an in-depthstudy of
processingparametersandcomparisonwith experimentwill be developedin a separate report.

The solution strategyfor the coupled problem involved a sequence of steadysolutions,with
varioustermsin themomentum andenergy equationsbeingscaledto providecontrol of thesolution
process.Unlike thebuoyancy-only testproblemof theprevioussection, theGrashofnumber wasnot
useddirectly as an embedding parameter. Rather, the viscousand thermal diffusion terms were
multiplied by independentscalefactors thatstartedwith valuesof several hundred andwerereduced
to unity over the course of the solution. The solution strategywas designedto keep the primary
forces, Lorentz and buoyancy, in balance as much as possible.To start the solution process, the
Hartman andJouleheatingnumberswereset to zeroandall othernon-dimensionalquantities were
set to their full values;the scalefactors wereset to ‘large’ values.The heatflux to the surfacewas
adjusted to produce a small melt pool and a reasonablesurfacetemperature. This solution was
convergedusing a combination of Picard andNewtoniteration.A seriesof stepswith increasing heat
flux anddecreasingscalefactors led to a largermelt pool.Thecouplingwith theelectromagnetic field
was then introducedwith fixed flow parametersandnon-zero HartmanandJoule heatingnumbers.
Convergenceat this point again required a combination of PicardandNewtoniteration with varying
amountsof relaxation. Thecreation of a second (Lorentz) convection cell wasa majorchangein the
solution path and in some casesrequiredmore than 20 iterations. When the two-cell solution was
established,a seriesof stepswith decreasingscalefactors led to thefinal convergedstate.During the
solution sequencethe Lorentz forcesand Jouleheatingwere updatedperiodically througha PVM
transfer between the two codes. The most recent temperature field was transferred to the
electromagnetic codeand a new force and heatingdistribution were returned to the flow code.In
some cases,as the viscosity=conductivity scale factorswere reduced, the thermal convection cell
would beginto dominatetheflow and,if unchecked,wouldeliminatetheLorentzcell. Reintroduction
of a largerLorentzforce (morecurrentthroughtheingot) at this point in thecontinuation pathwould
normally leadto divergenceof thesolution. Increasesin theLorentzforcecouldonly bemade when
both cells werepresent.

Shownin Plates3–5arecontour plotsof theflow field andtemperaturefield for thethreedifferent
currentinputsto theingot.Theplot scalesfor thestreamfunctionandtemperaturearethesame for all
three cases so that the changesin magnitudeof the two cells can be readily seen.As the electric

Table III. Comparisonof computedelectromagneticfield variableswith analytic
solution

Field variable Analytic solution V ;Ar;Az solution Ar;Az solution

Maximum V 9�444 9�420 —
Maximum Jr 1�2646105 1�2636105 1�2636105

Maximum Jz ÿ2�1726105
ÿ2�1416105

ÿ2�1976 105

Maximum By 69�06 72�06 72�09
Maximum QJ 3�039 2�936 2�939
Maximum Fr 921�7 866�2 873�0
Maximum Fz 933�7 895�3 896�1
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current density increases,the clockwise-rotating Lorentz cell strengthens and grows in size.
Conversely, the counterclockwise rotationof the thermallydriven cell decreases andthe cell pair is
pusheddownwardsinto theslightly growing melt pool.Thetemperaturefield is horizontally stratified
within themelt pool for all threecurrent levels.At thehighest current theLorentzcell is sufficiently
strong to perturbthestratification at thecentrelineandcreate anenlargedregionof high-temperature
melt. Note that in all threecases themaximum temperatureis located off the ingot axis, throughthe
surfacetemperature within the melt pool is nearlyuniform.

Theextent of themushyzonehasbeenindicatedin eachstreamfunction plot. At thehighestcurrent
level (Plate 5) the streamlines within the mushyzonehavebeenleft visible to show the relative
magnitude of the flow within this region. The upper half of the mushy layer has a fairly large
permeability and a clear effect of the flow can be identified. Lower in the mushy zone the
permeability decreasesand the fluid motion is slowedconsiderably. The mushy zoneintersectsthe
top surfaceof the ingot, indicating the presenceof a skull or solid shelf next to the crucible; this is
consistentwith observation.

Shown in Plates6 and 7 are someof the electromagnetic fields that correspond to the highest
current level. Fields for the other two cases are similar in spatial distribution but with reduced
magnitudes. The current lines show the obvious effect of having the ingot grounded above the
shrinkageandinsulatedbelow the separationpoint. The changein boundary condition at this point
leadsto singular behaviourin theJouleheatingandLorentzforce.This artefact doesnot influenceor
complicate the simulation of the melt pool, sinceseparationoccursin the solidified regionand the
singularity is confinedto a heatconduction region.

5. CONCLUSIONSAND COMMENTS

The objective of thepresentwork wasthedevelopmentof a realisticnumericalsimulationcapability
for vacuumconsumable are remelting problems. The methodsoutlined hereconsider most of the
major featuresinvolved in alloy processing. Theseincludethe flow in the melt pool andthe mushy
zone,heattransfer throughouttheingot andtheeffectsof theelectromagnetic environment.Thefinite
element methodsused for the non-isothermalflow field and electromagnetics were developed
separatelyandcoupled,for thepresentapplication, throughthePVM software.This hasprovento be
a flexible andeffectivemethodfor generating a multiphysicssimulation capability.

Thoughthe currentmethodis capable of producingresultsthat correspond at leastqualitatively
with realprocessing conditions, themodel development is not complete.Of major importanceis the
inclusion of solute transport and the prediction of macrosegregation. The addition of Marangoni
effects and the capability to examine electromagnetic stirring is also viewed as important. A
refinement of the thermal portions of the model, including enclosure radiation and a better
representation of the arc, would relieve a great deal of the uncertainty presentin the heattransfer
predictions. The presentformulation shouldbe coupled to a solid mechanics solution that would
predict the shrinkage point and not rely on an assumedtemperature for the determination of
separation. Finally, the solution strategy is uncertain and tedious becauseof its reliance on
continuation and the presenceof large non-dimensional parameters.Sometype of automation or
adaptivity would be a welcome development in this area, thoughthis is a long-standing problemin
computationalfluid dynamics. This uncertain path to a solution certainly needsto be improved if
simulation is to be usedfor routine industrial applications.
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