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FINITE ELEMENT SIMULATION OF VACUUM ARC REMELTING

D. K. GARTLING* AND P. A. SACKINGER
MS 08276, Engineering Sciences Center, Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185-0827, U.S.A.

SUMMARY

Vacuum arc remelting is a process for producing homogeneous ingots of reactive and macrosegregation-sensitive
alloys. A mathematical model of the transport phenomena in the ingot melt is presented together with a
discussion of the various simplifying assumptions and approximations that make the problem tractable, with
particular attention on transport in the interdendritic mushy zone and on the magnetohydrodynamics. The finite
element method is used to discretize the equations for the non-isothermal flow problem and the quasi-static
electromagnetic problem. Coupling of the finite element solutions for the two field problems is accomplished
using the Parallel Virtual Machine software. An analysis of the fluid flow and heat transport in the melt pool of
the solidifying ingot shows some of the factors that influence ingot quality during quasi-steady growth
conditions.(C)1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Vacuum arc remelting (VAR) is a process for producing homogeneous ingots of reactive alloys that
are prone to macrosegregation. The configuration of the VAR furnace is shown schematically in
Figure 1. The process is designed to melt a consumable electrode in such a way as to produce a new
ingot with better uniformity in metallurgical properties. A high current is passed through the
electrode (cathode) and produces a metal vapour plasma arc between the electrode and the melt pool
(anode) created in the water-cooled copper crucible. The plasma arc provides energy for melting the
electrode, causing molten metal to drop into the melt pool. A key to the production of high-quality
ingots is control of macrosegregation, which in turn implies control of the arc and the solidification
process in the melt pool. As part of an effort towards understanding the many factors that contribute
to the quality of VAR ingots, numerical techniques have been used to model the fluid flow, heat
transfer and melt pool shape in VAR ingots as a function of various processing strategies.

The work in this area and other related areas involving molten metal processing has an extensive
history, with the flow models becoming increasingly more sophisticated and complex. VAR-specific
applications have been developed by Bertram and Zamhend other$;®> mainly using finite
differencq’finite volume methods for the thermal or flow problem and simplified (analytic) field
descriptions for the electromagnetic problem. More general alloy solidification studies using a variety
of numerical methods are quite numerous and will not be catalogued here. Typical of this type of
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Figure 1. Schematicdiagramof vacuumarc remelting (VAR) processand typical computationalmesh.The metal vapour
plasmaarcprovidesheatto meltthe cathodewhich thendripsinto theingot melt pool. Heatis extractel radially from theingot
throughthe water-cooledcoppercrucible

—_

study is the work of Prescottand Incropera®’ Voller and coworkes®® and Beckermain and
Viskarta'® in devebping mushyzonemodsds for usein segegationsimulations.

The objectiveof the presentwork wasto devebp a comprehensie and extensible computaional
modd for the simulafon of VAR processes Becauseof the approachtaken, the resultof the work
was somewhatmore generaland providesa broad capability to study mary types of molten metal
flows that are influenced by electronagnetic fields Another by-product of the work was the
devebpment of a flexible method for couping finite elemant codesfor use in a variety of
multiphysicsapplicaions. The coupling algarithm is outlined herebut is covered in somedetail in
Referencell.

The plan of the paperis asfollows. In the next sectionsthe mathemattal statemehof the VAR
problem is given along with a few simplifying assumgbns and approximaions; the boundary
condtions and matefal modds are also reviewed.A brief section on non-dinensionalforms is
followed by a descripton of the numericalmethodandsolutionmethodsusedon eachfield problem.
A secton on the couping of the finite element codespreedesthe discussionof severalexanple
situaions. The paperconcludeswith comments on othe applicationsand future directions for the
propogd methoddogy.

2. MATHEMATICAL MODEL OF VAR

The first assumgbn in developng the VAR modéd is thatthe primary interestis in the ingot portion
of the procesgseeFigurel). Thoughthe metalvapourarcis animportantpartof the overall process,
the ability andneedto modd this regionarelimited. Thereforethe domainfor the computdion will
include only the ingot and perhas the suroundingcrudble. The needto include the crucible will
dependon the ability to realistically condersethe thermaland elecromagnéic problemswithin the
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FE SIMULATION OF VACUUM ARC REMELTING 1273

crudble into bounday conditionsfor theingot. A secom assumgbn limitsthe spatal depen@nceof

thefieldsto be purely axisymmetric;this assumpbn is justifiable owing to the cylindrical symmery

of the overdl process,although small locd deviations do occur. The numercal methodsare
devebped as fully threedimensonal, since casesinvolving (imposed) time-dependentmagneic

stirring in the circumferential directiors are of interestasaresituaticns with an eccentrically located
electrode.The exampespresentd herearelimitedto the unstired, two-dimensionalkcase Within the

computationaldoman the physical processsof concen includethe non-isohermalfluid mechanics
of the melt pool, a region of non-isothemal flow in a porous medum that representsthe

interdendric or mushy zone,solid body condudion throughthe solidified ingot andthe distribution

of the electric current(ohmic or Jouk heating and magneticfield (Lorentz force) throughoutthe

doman. Eachof theseprocessswill be descibed separatsl.

2.1. Melt pool

The flow and transportin the ingot melt pool are descibed by the incompressibé form of the
Navier—Stkesequatiors andanaccompaying energyequaton. For this applicationthe flow will be
assuned laminar, though the occurrerme of turbulencemay eventualy needto be consideed. Also,
interestin macrosegrgationprocesseswill requirethe inclusionof masstransportequaionsthatare
negkectedfor thesefirst studies Usingvectornotation,the required massandmomentum relaionsfor
the flow field are

V-u=o, (1)
po(% +u 'Vu> =—VP+V- () —p, AT —Ty)g +J XB, @)
where the rate-d-strain tensoris definedas
v=W +MW)"
and Nu)T is the transpos of Vu. Energytranspot in the melt pool is descibed by
Py U VT) =V-(&Vr) —|—Ji 2. ®)

In writing (1)«3), the Boussinescppproximaion was invoked to allow densty variatiors to only
occur in the body force term. Also, the Lorentz force (J XB) was included in the momentim
equaton and represats the body force due to the interection of the electic currentand magneic
field. The ohmic or Jouk heatng term (|J? /g, ) wasincluded in the energyequatio asa volumetric
soure@ and represats the electomagnéic energydissipatel in the matefal. Note that the specific
formsadopedfor the LorentzandJouleheatingtermsareconsistentwith the simplified Ohmris law'?
usedin high-ekectrical-onductivity systemsand definedin a subsguent section. The remairing
paranetersin the equatims are definedas follows: u is the velocity vecta, t is the time, p, is the
referencedensity at the referance tempeanture 7, P is the pressureT is the temperatuve, [Lis the
viscosity, ﬁ is the coefficient of thermal expan#on, C, is the specific heat, k is the thermal
condudivity, @, is the electric condudivity andg is the gravitationa vecta.

2.2. Mushyzone

The interdenditic region betwea the melt pool and the solidified ingot is modelled using a
Brinkman-Darcy modelfor flow in a porousmedum. This follows currenttheay andpradice® 03
in appraximating the dendritestructureasan effective (anisotrojfic) porouslayerwith a permedility
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1274 D. K. GARTLING AND P.A. SACKINGER

that varies from zero at the solidustempeature to infinity at the liquidus tempeature. The fluid
motion in the porouslayer is describedby

V-u=o, )

%% b Vo =7 V- (4~ (T T <. 6)
If local thermal equilibrium betwea the interdendritic fluid andthe porousmatrix is assumedthen
the effective energyequatio for the porousregionis

(e T H@Cu - VI =V (V) +-- . ©)

In equations (4)—(6), u is the volume-averagedrelocity vector(superfical or Darcyvelocity), P is the
vqume—averageqbre$ure,(]5 is the porosty (liquid volumefraction) of the porousmedum, Kis the
permeability and [ is the Brinkman,or effectiveviscosity. The supersdpt ‘e’ indicatesan effective
propety and the supescript ‘f denotesa fluid value; all other symbols retan their previous
defintions. The effective propertes (including the electric condudivity) are usually porosity-
weighted averagesof matrix and fluid propertes. Equatons (4)—(6) represeh a sigrificant
genealization of the standad Darcy modé for non-isohermalflow in a saturaéd porousmedium.
Notethattheinclusionof theadvedive transpot andstresgermsin (5) permts the smoothtransition
from the flow in the melt pool to the flow in the mushyzone. This transition is controled by the
variafon in materfal propeties suchas permedility which dependon the field variables suchas
tempenture. The transition from the mushy zoneto the solid ingot is also controlled by materid
propety variatiors that asynptotically approachsolid values as the porosity goesto zero. The
problemsandissuesassocited with couping the aboveporousflow modelwith aviscousflow in an
adjaining region(melt pool) were descrited and studiedby Gartling et al.;** the methodsdeveloped
therehavebeenadoptedfor the presentapplicdion.

2.3. Solidifiedingot

After solidificationthe motion of theingot becomesa simple solid bodytranshktionwith a velocity
defired by the globd massbalance. The use of a Eulerian co-ordnate systemimplies that the
advedive partof theenegy equaion is still requirel. Thusthe only equation neededor thisregionis
(3) with aknown velocity. As a pradical matter with respecto numericalimplementation,thisregion
is actualy treatedasafluid with avery largeviscosty; equations (1)—3) areusedfor thisregion.The
large viscosty produceshe requiredeffect of solid body motion with the correctenegy transpot.

2.4. Electromagetic fields

Therelevar electomagnéic problemin theingotis descrited by a quasi-satic form of Maxwell’s
equatons?1*1®|n rationalMKSA notaion theseequati;ms may bewritten for a condudive materid
as

B
VxH =3, ®)
V-B =0, ©)
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FE SIMULATION OF VACUUM ARC REMELTING 1275

where the vectorfield variables arethe electric field intensity E, the magneic field intensty H, the
magnetic flux densityB andthe condudion currentdensityJ. A conifinuity condtion on the current
densty is also definedby

V-J=o. (10)

To complée the formulaton, the consttutive relationsfor the materal arerequiral. The fluxesare
related to the field variablesby

B=[yUH =l,H or H=VVB=V,B, (11)

J=0,E (12)

where i, is the magneic permeability V,, is the magneic reluctivity and o, is the electric
condugivity. In equatios (11) and (12) the subscmpts ‘r and ‘0’ on the materal coefficients
representrelative and base(or free spacé valuesrespedtely. Note alsothatin geneal the materid
propeatiesaretensorialin nature andmay befield-dep&dentandanisotopic; sone propety relations
may also exhibit hysteresiseffecs. Ohm’s law (12) hasbeenwritten in a simplified form*? which
neglectselectric currentsdueto the motion of the condudive materid. This is a good approimation
for the high condudivity andlow fluid velocitiesfoundin VAR. The aboveequationshavealsobeen
written for the caseof small magnetic Reynolds number+>** which is defined as Re,, =ULG, l4,,,
where U is a typical fluid velocity andL is a represatative length scalefor the flow domain.The
magnetic Reynobls numberrepresets a ratio of magnetic convectionto magretic diffusion and for
smdl valuesof Re,, the convedive transpot of the magneic field may be neglected.For VAR a
typical magneic Reynolds numter is Re,, ==0-04 and convedion of the B-field may be negleced;
this appraiimation decouges the magneic field from the fluid velocity field.

For usein numertal computaion it is usualto rewrite the above systemin terms of potential
functions and therebyredue the numkber of equaions that must be solved. From equatia (9) it
follows that B is derivablefrom a vector potential** and thus

B=V XA, (13)
where A is the magneic vector potential. In addtion, from equatia (7) it canbe shownthat**
E=—W —%, (14)

where V is the electic scalarpotential Using thesetwo definitions and the relevan constitutve
relaions, equatias (8) and (10) become

Vx(,VXA)=J =¢.E =—0. VW — % (15)

V- —GCVV—O;%A =0. (16)

Thesetwo equaions provide the neede descrigion for the electric and magneic fieldsin the VAR
problemandothe magneically drivenflows. For the nominally time-indepementDC currentsfound
in VAR the time derivativesin (15) and (16) are eliminated and the equationsmay be solved in
sequace with the electric potential equation (16) consideed first. With known valuesof V the
currentdensitiesn theregionmaybefoundfrom (14) and(12). Usingthe currentdensty asa known
soure, equaton (15) may then be solved for the magetic potential and subsequely for the
magneticflux B. However,the ultimate quantties of interest arethe Jouk heatingandLorentzforces
defined in (2) and (3). The elecric and magneic fields are present throughoutthe ingot and the
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1276 D. K. GARTLING AND P.A. SACKINGER

electric conductiviy and magnetic permeaility are necessarilyfunctions of the materal state(i.e.
solid or liquid) andtemperatire. This depen@nceleadsto the two-way couping of thefield problems
and providesone of the major difficulties for this type of simulation.

For othe applicaions with time-harmoric electromagnet fields suchaselectroslagmelting and
indudive melting, a phasorrepresentdon of the field variables is apprgriate This leadsto a
simplification of the time derivaive termsin (15) and (16) but addsthe difficulty of complex
coeficients and variables within the equations=> Also, in sore situatims an addiional gauge
constaint suchasV * A =0 mustbe placedon equati;s (15) and(16). This ensureshe unigueness
of A, sincethe unconsrained formulation only ensureshat V X A is unique. This constrant is not
requredin the preent casebecausehe derived quantities of interest, namelythe Lorentz force and
Jouk heatng, dependonly on the curl of the potential

2.5. Material modds

Alloy solidificationis a complex processandthe materid modds usedin the numeical algarithm
arecritical to realistic and accuratesimulations.In somecase accuratepropaty informationis not
avaliable (e.g.moltenmetaldata)owing to measuementdifficulties. Assumgionsandlimit ationsfor
the VAR propety descrigiions are outlined here

Thedensityof the materialis assuned constanthroughoutthe domainandall variatiors in densty
due to solidification are negleced. The latent heat of fusion is accounted for via an enthalpy
method*® wherethe specfic heatis a temperaturedependentfunction given by

C]SJ’ T <TSO]’
Cp(T) - C; +AH19/(Tllq _Tsol)’ Tsol <T <Tliq’ (1 7)
Clg’ Tliq <T7

where Ty, and T, are the liquidus and solidus tempeatures. The enthally releasedduring
soIidification,AH}), is approximaedby assunmg it to be auniformly distributed overthetemperatire
rangeof solidification, 7},, —T,. The basevaluesof specificheat,Cl‘: , C; andCy, correspondo fluid,
solid and effective values respectivy. Each base value may be an independat function of
tempeanture,if required, andthe effective value for the mughy zoneis deteminedfrom the mixture
rule C5 =¢Ct +(1 —P)C3, whereis the loca porosity or liquid volume fraction.

The thermalconductivityis tempeature-depedentin both the solid andthe fluid; the effective or
mushy zonevalue is a porosity-weghtedfunction similar to theform shownfor the specificheat.The
thermal expangon coeficient may be temperatve-depedentwithin the fluid andmushy zonebutis
setto zeroat the solidustempenture. The electric and magneic propeties g, andV,, are generdly
tempenturedependentn both the fluid and solid regionswhen suchdataare available. The mushy
zoneagainusesa porosty-weightedvalue for both electric condudivity and magnetic reluctivity.

Two viscositieshave beendefinedin the basic equatias, the standardfluid viscosty and the
Brinkman viscosty for the porous layer. Owing to the absewe of any expeimental data and
recagnizing that the Brinkman viscosity must approachthe fluid viscosity at the edgeof the melt
pool, the two viscositieshave beenset equalin the presentmodd. The viscosty is taken to be a
strorg function of tempeanture (either linear or exponetial) betweenthe liquidus and solidus
tempeatures.At the solidustempeaturethe viscosty is typically setat a value 10°~10'° times the
liquidus value, effectively immobilizing the ‘fluid’. Otherviscosty modds that dependon the loca
porosty’ could also be usedbut have not yet beeninvestigated.In concet with the changein
viscosity acrassthe mushyzonea variationin porouslayer permeaility and porosity is evauated.
The permeaility for a dendite layer is anisotrgic with the principal directiors for the tensor
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oriented normal and tangentto the local isothermy assummg steady solidification. Following
Padrier,'® the principal componentsof the permeaility tenr may be descibed by

— mnﬁ — mt(ﬁ
=gy 7 0

where m, and m, are morphobgy coefficients that dependon the dendrite strucure, that is. the
primary and secomlary dendite arm spacirgs. The subscipts ‘n’ and‘t’ referto direcions normal

and tangent to an isothem. Equation (18) is similar to the standird Carnen—Kozewy relation for

pernmeability asa function of porosity in geneal porousmaterials.The remainirg relationshipneeded
to close the mateial modds is the depen@énceof porosityon temperatureSeveralpossililities exig,

including a simplelinear relation or the more complex Schei equatim®® andrelatedtreatmentsthat
account for solue redistrbution. To be consisent with the latent heatreleag, the presentmodé

empoys the simplified linear relation

T —Ty
e — 19
¢ Tliq — T ( )

2.6. Boundarycondtions

The bounday conditionsadoptedor the VAR modelconnet the conputationalregionto the parts
of the physical processthat have beenremovedfrom constderation. A numkber of assumpbns
acconpanytheseconditions,aswill be explainedin the following.

Refering to Figure 2, the upperbourdary of the ingot is a free surfaceacrosswhich mas and
enepgy aretranspoted via intermittent dropletscomingfrom randam locationsbeneatththe electode.
Thefluid inflow bounday conditionis setby the aveiagespecfied melt rate,thoughthe actual inflow
distribution is not known. Unde a quasi-seady melting assumpbn the inflow is distributed
uniformly overthetop of the ingot. This assumedpatia distribution is not viewedascritical, since
the inflow velocity is small (~10"°m s %) compared with the motion within the melt pool
(~10"2 m s™%). The upper surfaceis also assumedo be sheasfree, which neglecs Marangoni
forcesdueto surfacetensiongradientscausel by tempeatureand/or solutevariaions on the surface.
Dataon surfacetensionat elevatedemperatiresare sparsethis effect could be easly included for a
flat free surfaceandwith sonewhatmoredifficulty for a deformedfree bounday. Along the crucible
bourdary the fluid /solid moveswith a vertical velocity given by the melt rate. At outflow the flow
condtion is a constantnormal traction and zero radial velocity. Theseconditionsare somevhat
artificial, in the sensethatthe growth of a VAR ingot is inherentl a time-degendentbatchprocess.
The top bourdary of theingot moves upwads asa slowly increagng function of time andthe bottom
bourdarypostion remansfixed atthebasepate. Howeve, from anumeical moddling perspectie it
is moreconverientto invoke the quasi-seadyapproaimationon a Eulerian grid andallow theingotto
move throughthe doman. This approxination is reasonabldor the latter stagesof ingot growth,
when theingot lengthhasreachedseveralingot diameersandthe growth ratehasbeenheld consant
for severl themal diffusion timesbasedon ingot radius. This appraachis similar to the processof
coninuouscastirg.

Thermalboundary conditionsfor theingot, which areillustratedin Figure3, arethe mog difficult
andinvolve the mostappraimation Over the top surfaceof the ingot the net heatflux is specified
with anassumedadial distribuion. The assumedgrofile is a consantflux from the centeline of the
ingotto a radiusthatis equalto the electoderadius;the flux decreaseineady from the edgeof the
electrodeto the crucible wall. Energyis input to the melt pool surfacefrom the plagna via seveal
mechanisns, the mog importantbeing the advectiveflux of heatconiinedin the supeheatedmolten
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Figure 2. Flow boundaryconditionsfor VAR. Molten metal dropletsfrom the electrodefall into the melt pool, providing a
temporallyand spaticallyaveragednflow. Solidified materialalongthe ingot—crucilbe boundaryandat the bottomtranslates
with the velocity given by the melt rate

metaldroples falling from the electrodeandthe heatflux dueto electonsfrom the plasmastriking

themelt pool surface.Overall energybudges for the processhavebeenperformed usinginformaion

from theinput electical powerandthe heatcarriedawayby the cooling water. Theseglobd energy
balancessuggesthat 50%—3% of the electical powerentersthe melt pool surfacein oneform or

anoter,with the exactamaunt depenéhg on the materid beingmelted, the size of the ingot andthe
operding condtions.In the presenmodé the netheatflux bounday condtion is partitionedinto two

componentsA convedive conditionis usedto representthe enegy dueto the dropletinflow anda
specfied flux accounts for the energyfrom the plasma.One of the major unknownsin this modelis

the plagmaflux, thoughits magnitudecanbe bounded Thesetwo effectswereseparatdto aid in the
contol of the solution process.

As theingot solidifies, it shrinksin diameterandeventualy sepaatesfrom the crudble, leavinga
shrirkagegapthatmayor may not befilled with aninert gas.The thernmal resistane alongtheingot-
crudble interfaceis therebre quite variable and is simulated with a heattransfercoeficient that
varieswith temperatire andaxial location. Above the separabn point the contactbetwee ingot and
crudble is assumedo be very goodandthe heattranser coefficiert is quite high. Below separabn
the heattranskr coefficient is basedon condudion through a gaslayer, if it exigs, and radiation
betwee concentric cylinders. The point of separatioris setby speciying the tempenture Ty, ;. at
which shrinkag occuss; the transitionfrom one heattransfercoefficientto anotheroccurs over a
tempeatureinterval cented on T, The shrinktemperatire is usually setwell below the solidus
tempenture, thouch a reliable value for this paraméer is not known. Corsideration of the solid
mechanicsresponseof the ingot could eliminate the need for this type of paranetrizgion. The
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q,= f(r)

heat flux distribution under electrode
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Figure 3. Thermalboundaryconditiors for VAR. Heatis input from the metal vapourarc andthe superheatd molten metal
dropletsfrom the electrode The ingot—crucitle heattransfercoefficientis high wherecontactis goodandis low aftertheingot
separate$rom the crucible

thermal boundaryconditionat the bottomof the computationaldomainis the usualoutflow condition
of a zerocondutive heatflux; the convectiveflux is left uncongrained.

The real electronmagnetic environment during a VAR process is quite complex but can be
simplified considerablyfor the purpo® of moddling thefluid flow andheattransgrin the melt pool.
The averagecurrentsignal is DC, but superinposedupon this basic DC sigral are fluctuations
govenedby the dynamics of the plasmathe cathodespotsandthe occasioml drop shorteningevents
during low-currentmelting. Thesephenonenaall contibuteto a currentflux distribution on theingot
melt pool surfacethatvariesin time andspace Fortunately,it is only the aveiagetemporalbehaviour
of the currentthat needsto be takeninto account; the detals of the electical signaturethatoccuron
time scalesfasterthanthe time scalesfor thermal and momentum transpot in the melt pool canbe
avelgedto a good apprximation.

The electic andmagnetic bounday conditionsareskethedin Figure4. On the top surfaceof the
ingot melt pool the electric currentdistribuion is assumedo be of the form

L) =0, V7 = L 7 JolGiir/R) (20)

2mR0 T (o)

where I, is theinput current R is the radiusof theingot, J, and./, areBesselfunctionsandjj is the
first root of the Besselfunction J,. This distribution is physically reasonableand provides the
simplest anaytic solutionto Laplaces equatim (Ohm’s law) on the cylindrical (ingot) doman.?°
Though the distribution in (20) correspads to a simplified problem (no propety variation and
consantsidewdl bounday conditions) it doesprovidea usefulelectrical bounday conditionfor the

(©1997by JohnWiley & Sons,Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1271-12891997)



1280 D. K. GARTLING AND P.A. SACKINGER

J,= f(r)

current flux distribution under electrode
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Figure4. Electricalbounday conditionsfor VAR. Thecurrentflux distributionat the melt pool surfaces specified Theingot—
crucibleboundaryis groundedvherecontactis goodandis insulatedafterthe ingot separatefrom the crucible. The bottomof
theingot is grounded

numeical simulation. The analytic solution for the caseof a grounced sidewdl and bottom also
providesa checkfor the elecromagnéic portion of the numertal algorith. Thoughtheoverdl current
for the VAR processis known, the fraction of the current that actually passeghroughthe ingot is
somewhatuncetainandis afunction of the operatingcondtions. The paranmeterl, is specifiedfor the
preent model but could be removedasa variable with a more complde electromagntc simulaion
that included the electrode,arc andlossesto the crudble wall abovethe ingot.

Theelectrical boundarycondtions on the sidewallandon the bottom of the computatonaldoman
areinitially takento be ¥ =0. The grounded bottomboundaryconditionfor theingot is reasonable,
since electical contactis geneally goodat the copperstod plate.However,this bounday condition
is appraimate, becawsethe bottomof the computationaldoman doesnot coincide with the location
of the stool. On the ingot—cucible boundary,abovethe shrinkageseparatiorpoint, good electical
contactis expeded andthe grounded boundaryconditionis appropiate. Below the sepaation point
an electrically insuated condition 8V/81 =0 is more appr@riate andis usedin sorre simulafons.
Note that evenwith a groundtype bounday alongthe entire sidewd morethan90% of the current
passs to the crucible sidewdl in the top ingot diameterand the currentflux to the crudble in the
shrirkage gap region is small. There is a significant difference betweenthese two boundary
condtions only when the sepaation point is close to the top of the ingot. The location of the
sepaation point and the changein boundary condition are part of the data suppled to the
electromagneats codefrom the flow analysis.The magneic bounday condtionsaresetontheradial
andaxial componerd of the magneticpotential; only theaxiad andradialcomponerd of A existwhen
the currentis confinedto the (r, z) planeandthe geometryis axisymmetric. The radial componentof
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A is zeroon thetop andbottom of theingot andthe axial componentis zeroon the outsidebourdary
of the ingot. The axial componenton the top and bottom surfacesand the radial componenton the
outdde boundarywereleft unconstained,with naturalboundaryconditionsbeingimplied. Theseare
appraimations for an unboundd magnetic flux problemt* and are reamnableas passivebounday
condtions for the ingot.

2.7. Non-dimeasional equatons

Natural convedion problemsdriven by a combindion of thermal buoyancyandLorentzforcesare
difficult to simulate numericaly becase of the large but opposingvaluesof the force contibutions.
The presenceof a melt zone also complicatesthe solution process.especialy when a steadyflow
solution algarithm is used.It is oftenadvanageougo non-dinensionaize thefield equatimsanduse
the critical non-dmensiamal parametergo help in the contol of the solution process.

In the preentwork the transportequatias for the melt pool (1)«6) were non-dimensionalizd to
produe the sysem

V-ux =o, (1)

ELI*_'_ * o Vur =—V, * | 1 V-“fk—ipk _ 1 :“ * — [F @ _|_ * *
(22)

el * .V@k — 1 Vo k*V@k ‘]00 J* 2, 23
g+ TU Gro)Pr ( )+W| | (23)

where the supersdpt ‘*' now indicatesa non-dimensionabariableor functionandthe Vis alsonon-
dimensgond. The melt pool and mushyzone equaions have beencombinel to produce(21)-(23),
with the materid propety functionsnow definedsuchthattheyarevalid throughoutbothregions.To
arrive at (21)—(23),the primary variableswere scakd according to

x* =x* /R, u* =u/U, t* =tU /R,
/ / / o
® =(r —r1,)/Ar, J* =3/J,, B* =B/B,,
where R is the ingot radius, the velocity scale U = _Ag[3,ATR) is a buoyang/ velocity and the

tempeaturescaleis AT =Tiq —Ts1» With a referencetempeature 7, =; (Tllq +T,;). The variable
mateial propetiesarenormalizedby referencevaluesevaluatedat 7,,. The electomagnéic variables
arescaledby By =, J,R and.J, =l /TR?, where I, is the total input current to the ingot.

The non-dimensional parametersthat occur in (21)—(23) are defined as the Prandt numler
Pry =14 C,, [k, the Grashof number Gr, =g, ATR® /i, the Darcy numter Da, =1, /R?, a
magnetic Prandtl number Pr,, &E/,lma/% the Hartman numker Ha} =B}R*a, /l4, and a Joule
heatng numkber Jo, :J0R2/0 ko Once the ingot mateial is selectednomlnalvaluesfor sevenl
of theseparametersanbe determired. Theremaning paraneterssuchasHaj andJo, dependonthe
processingconditions.Represendtive valuesfor the non-dimensionalparameerswill begivenduring
the discussionof the ingot simulations. The Grashofand Hartmannumkers were idertified asthe
primary contol parameers for the simulation since they provide the relative influence of the
buoyancy and Lorentz forces. Theseparaneterswere usedto assst in incrementallyadvaning the
soluion processto the desied, time-independentflow state.

Boundary condiions for the non-isohermalflow problemwere also mace non-dinensionalwith
the scalirgs listed in (24). The specifed inflow velocity becomesu®, =u;, /U Pe/\/(GrO)PrO,
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where the Pecletnumter is ;, L /0, ando, is the thermal diffusivity. The heatflux overthetop of the
ingot transbrmsto a Biot numter distributon ¢*(r*) =Bi.(+*) =g,, ()R /ky AT where ¢, is the heat
flux due to the plasma. The convedive flux over the top of the ingot can be written as
q*(r*) =Bi.(r* (@ —©¥), where Bi, =h,(r)R /k,, G is the liquidus tempeatureand 4, depend
on the melt rate. The heattranskr alongthe ingot—cricible bounday wasscaledin a similar mamer
to produceq*(z*) =Bi, (z* @ —@¥), with Bi, =h,(z)R /k,. € is the cooling water temperatire.

Theelectomagnéic equatimscould alsohavebeenreduedto a non-dimensionalform. However,
therewasno appaentadvantagen this type of scalng, since the equaticns werelinearandcould be
solved without iteration. The important effects from the elecromagnéics come from the derived
variables and thesewere scaledafter they had beencommuricatedto the flow code.

3. NUMERICAL METHOD

The coupked fluid mechanicsand electromagngc problem outlined in the previoussectionswas
convetedto a discretecomputatimal form through the useof a Galerkinbasedmethodof weighted
residuds (MWR) anda finite elementappraimation. Becausethe flow andelectronagneticsolution
scheneswere devebpedsepaately, they will be descrited individually.

3.1. Incompeessibility flow algorithm

The numaeical solutionto the non-isohermalflow problemin the ingot was carriedout using the
code NACHOS 11,%* which is basedon a mixed finite element method. The formulaion usesthe
primitive variableform of the equations asshownin (1)—«3) andincludes the capability of transition
to the Darcy—Binkmanequaions givenin (4)—(6). The developnent of the finite elemant equaions
corresponéhg to (1)—(6) is adequéely treaed elsewheré®2*~>3andwill only be summarzedhere.

The finite elementequatons resultingfrom the Galerkin MWR can be written in matrix form as

—Q"U =0, (25)
MU 4-CU +AU —QP +KU +BT =F, (26)
NT +DT +LT =G. (27)

The vecbrsU, P andT representthe discrete(nodd) velocity, pressureandtempeanturefields. The
matrices are the discreteforms of the termsshownin (1)«6), with M and N being the massand
capad@tance matrices, C and D the advectionterms,K andL the diffusion operatorsA the Darcy
term,Q andQ" the gradientanddivergerce operatorsand B the body force term. The vectorsF and
G representthe surfacestressesappied fluxesandvolumetric sourcedor the doman, including the
Jouk heatng and Lorentz forcesfrom the electomagnéic fields

The element-level interpolationfunctionsusedin the preseniwvork consistedf quadatic Lagrange
functions for the velocity andtempentureandlinear discantinuouspressureapprximations. Time-
depenént problemsare solved using an implicit predictor-€orrecta (Adans—Bashérth, trapezad
rule) algarithm with adaptive time stegp control. Time-indegpenden soluions were solved with a
Picard or Newton iteration method; zerotherder continudion was usedto reach solutions with
significant convedion. All the soluion methodssolvedthe equatiomsin a fully coupledmanrer and
useda direct solver for the resultinglinearalgebra problem
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3.2. Electromagetic algorithm

Theelectromagneticfields for the VAR problemwere computel using the TORO|I code?* which
is basedon the electric scalarand magneit vecior potential form of Mawell's equatons. The code
was designedto simulake a variely of electomagnéic problens, including elecrostatics, steady
currentflows andeddycurrents.The quasi-seadyVAR appicationis a magnetstaticproblemthatis
descibed by a reducedform of (15) and (16). Thatis,

Vx(,VxA)=3=—Vr, (28)
~V+(a.Wr) =0. (29)

The finite element equationsresulting from the Galerkin MWR usedon (28) and (29) can be
written in matrix form as

KA =G +G,, (30)

LV =F. (1)

In equations(30) and(31) thevecibrsV andA representhe nodalvaluesof the electricpotentialand
the componentsof the magnetic vector potential two components,4, and 4., exist for the VAR
problem.The operator. is theweak form of the LaplacianandK is theweakform of thedoubke curl
operdor. The vectorsF andG containboundarycondiions for the current flow and magnetic flux;
the vecor G; representghe current sourcederived from the gradientof the electic potential.

Equatons (30) and (31) aredecouped and,asnotedprevioudy, may be solvedsequentidi/, with
the electric field being processd first. For VAR appicationsthe equaions are linear, thouch the
matefal propertiescon@inedin L and K are temperatire-depadent. Soluion of the linear matrix
problemsasso@tedwith (30) and (31) wasaccomplifiedwith a precondiioned conjugategradient
iteraive method. The elemert-level interpolative functions usedin the presentwork consised of
guadatic Lagrange functionsfor the potentials. The Jouleheatingand Lorentz forcesneedel in the
flow simulation arecomputel from derivativesof the potentialsevaluatedat the integrationpointsof
eachelement.

3.3. Coupling algorithm

As is evident from the VAR problem thereis often a needto couple two or more solution
processes(computercode$ in orderto simulae a complex multiphyscs problem. In mary previous
case this type of requiremat hasled to the devebpmentof a fully integratedcodethatcontainedall
the necessar mechanicdor a specificappication. This approachs time-consuning andexpensve,
with the end productoften lacking the flexibility or geneality for othe appications.lt is generaly
very difficult to anticipatethe extentand types of coupling that may occur in a wide variety of
mechanicsappications.

The solution arrived at for the VAR problem is quite generaland makesuse of well-developed
software libraries. In ess@&ce the codes are coupkd using a data exchangemethod under a
maﬂer/slave paradigm.In the VAR exanple the flow solutionis the masterprocess, since the flow
dictatesthe majortime andlengthscalesfor the simulation; the electromagnet solutionis the slave
process sine it simply provides ‘load’ data when needé or requestd. Since this relationsip
betwea flow and electromagntics may not hold in other types of simulafons, both codeswere
despnedto function aseithera mager or slave processAt given intervalsin the solutionsequence
the maste procaluredecideghatnewdataareneede from the slaveprocessThe masterthensends
any neededfields (e.g. temperatire, materid state)to the slave and waits for a reply. The slave
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computesa new field soluion using the new data, sendsthe requested data (e.g. Jouk heatng,
Lorentzforces)backto the masterandwaits for anotherrequest.The major requirementfor sucha
dataexchangetype of couping is the ability to control code (processorto-coce (processor)data
transkrsin a continuaus and seaméssmamer. The messageassingutilities developedfor pardlel
processingenvironmens provide sucha capaliity. In the presentcasethe Paralkl Virtual Machine
(PVM) software®™ was utili zed, through other comparale productssuch as the MessageRassing
Interface(MPI)?® could havebeenused The overall dataexchageprocesscanbe devebpedto make
allowancesfor the useof different computdional meshedor the mager and slave soluions. This
requres that a med-to-meshtranslatorbe inserted betwea the medanicscodes but this is still
easily accommodatd through the PVM software. For time-dependentproblens any inherent
differencesn time scalebetwea the medanicsphenonenacanbetreatedthroughsubcyclingof one
of the solutions.Thoughthis type of coupling methodhasgreatapplicability, particulaly for VAR
appications,it is not without somedrawbags. Most notable is the degraled convegencebehaviour
for strongl coupled,non-linearphysicalsysems.Full detals of the propo®d exchange method,its
strenghs and limitations andits implementation are providedin Referencell.

4. EXAMPLE SIMULATIONS

The algarithm outlined in the previoussectionshasbeenusedto studya number of VAR problems
involving a uranium—nodbium alloy (U-6 wt.% Nb). This alloy was selkectedbecawse of its strong
tencency for macroggregaibn and the extensiveexpeimental resuts that are available®>2”?8for a

variety of processingconditions.Prior to attemping fully coupledsimulaions of the VAR process,
sevenl simpler caseswvere analysedo verify the flow andelectromagnett soluions and deternine

appr@riate meshdensities

4.1. Preliminary simulatians

The NACHOSII codeusedin this studyhasbeenprevioudy testedon awide variety of isothernal
and non-isohermal flow problems, including benchmak computations?®3° Though the basic
accugacy of the codehasbeendemorstrated the quesion of meshadequacyandmesh independence
alwaysarisefor new appications.In the presentwork a simplified VAR problem was usedto teg
seveal grid refinenentsbeforeproceediig with full simulations.An axisymmetric cylindrical region
wasmeshedwith threeincreaingly refinedgrids of nine-nodefinite elements. Grids 1, 2 and3 were
defined by mesh densitiesof 10 X 40, 20 X80 and20 X 120. Othermorerefinedgrids wereteged
but produ@dno furtherchangs in the solution andarenotreportedhere.In eachcasethe upperthird
of the cylinder containedat leasthalf of the elementssincethis regioncontainsall of the melt pool.
At low power inputs the mesh was uniform in the radial direction and biasedtowardsthe upper
surface of the ingot. Higher powe inputs required that the meshalso be biasedtowards the outer
surfaceof the ingot, sincethe melt pool hasa largerradial extent.

The flow problem consstedof a melt pool driven by thermal buoyang forcesonly; no Lorentz
forceswereincludal in thes tests.The melt pool did include the mushy zoneas moddled by the
Darcy—Binkmanequatimsfor all the relevant materid propertydepenéncesoutlinedprevioudy. A
setof typical VAR parameersfor the U-6 wt.% Nb alloy is givenin Tablel. Convergd solutions
for two input heatflux levelswereobtaned on eachgrid. The flux levels were selectedarbitrarily to
produ@ melt pools of different sizes. The soluion procedire used an incrementation and
contnuationstraegywith the Grashofnumter asa paraneter.At eachvalueof the Grashofnumter,
various conmbinations of Picard and Newton iteration were employal to obtdn a soluion. A
relaxaton paraméer wassometimesequiredto assst convegence Also, the separdbn point for the

INT. J.NUMER. METH. FLUIDS, VOL 24: 1271-139 (1997) (©)1997by JohnWiley & Sons,Ltd.



FE SIMULATION OF VACUUM ARC REMELTING 1285

Table I. Material properties and VAR processing parameters for
U-6wt.% Nb alloy

Material property Value Units
Density 156 x10* kgm™3
Specificheat 2000 Jkg k™t
Thermalconductivity 300 Jm stk
Viscosity 50 X103 kgm st
Thermalexpansion 74 X10° K™
Latentheat 80 x10* Jkg™t
Liquidus temperature 16055 K
Solidustemperature 14400 K
Intrinsic permeability 10 X108 m?

Electric conductivity 15 x10° Qim?

Magneticpermeability 41T X107 Hm™?
Processingparameter Value Units

Current 6-0 kA

Power 1680 kw

Efficienty 0-53

Melt rate 7400 kgh™t

Ingot radius 0-1042(4-1) m (in)

Electroderadius 0-0780(3-1) m (in)

Non-dimensionaparameter Definition Value

Pro 1 Cy, /Ko 0-033

Gro Pe/ATR? /18 1-3 X10°

Dag K, /R? 92 X107°

Prm Dol G- /L 6:0 X10~’

Ha} B§R2 A 17231

Jo JIR? [o, [k AT 45 X102

ingot was fixed for thesecases, which helped improve the iterative convegence.Becausg Lorentz
forceswere nat included to countertalancethe buoyang forces,thefull valueof the Grashofnumter
could not be reachedThe grid tess were perforned at a Grashofnumber of 1-3 X 10°.

Shownin Tablell aremaximumandminimum nodalpoint valuesfor severalvariablesobtainal on
the variousgrids. The apprachto a meshindepement solution is clear. The differences betwee
meses2 and 3 are geneally lessthan 3-5%, excep for the derivative (heatflux) valueswhich
convege more slowly with meshrefinement. Mesh 2 wasadoped for mog of the subsequentuns
since it showedgood accuacy andwas sonewhatlesscostly.

The meshrefinenent test also provides sone insight into the basic flow characterists to be
expededfrom the VAR simulations.Shownin Platesl and2 arecontourplots of the streamfunction
andtemperatire fields for the two heatflux levels Superinposedon eachstreamfunction plot is a
shadeé bandthat spansthe liquidus and soliduscontoursand definesthe extentof the mushy zone.
The convectize cell rotates clockwise, transerring energy from the incoming metal near the
centelineto the edgeof the melt pod andsubsguentlyto the boundaryof theingot. The convedion
atthe lower flux valuesis still relativdy weak,sincetheisothemsarecondudion-like in shapeThe
isothems for the highea-flux caseare clearly altered by the flow and have a more straified
appeaance At theingotbounday the shapeof theisothemsis influencedby the changen boundary
condtion at the ingot shrinkage (separ#ion) point. Though thee soluions show trendsin the
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Tablell. Meshconvergencef flow solutionfor two powerinputs
Low flux level
Mesh1 (10 X40) Mesh2 (20 X 80) Mesh3 (20 X120)

Maximum Y —4-363 X103 —7-751 X103 —8576 X102
Maximum u* 0-2685 0-3676 0-3878
Minimum u* —0-1661 —0-2363 —0-2400
Maximum v* 0-1134 0-1340 0-1381
Minimum v* —0-1125 —0-1412 —0-1539
Maximum @ * 5-607 5443 5-388
Maximum g 2543 2572 2767
Maximum g} 1-473 2392 2859

High flux level
Mesh1 (10 X40) Mesh2 (20 X80)

Field variable Mesh3 (20 X120)

Maximum —9-370 X102 —11:920 X103 —11:920 X103
Maximum u* 1.022 1-340 1-307
Minimum u* —1025 —1139 —1125
Maximum 2* 0-673 0-802 0-798
Minimum o* —1-261 —1-856 —1-794
Maximum @ * 26:48 24-46 24-38
Maximum g} 1256 1356 1352
Maximum g* 6-128 9-824 1179

simulation, they are not realistic owing to the absewee of the Lorentz forcesand the unrealisically
high temperatuesthat are prediced on the surfaceof the melt pool.

The electromagnét soluion algorithmasimplemeriedin the TOROII codewasalsoverified for
accumrcy before being coupled to the flow problem Mesh refinement studes like thoserepoted
abovewere carried out for a simplified magneobstatic problem. This problemalso hasan analytic
soluion, which simplifies the evaluation of accuacy for the numericalsolution. The problemagain
conssts of a cylindrical ingot with the electric current density specifiedover the top surface The
lateral and bottom surface of the regionare grounded with a zeroelectic potential. As reporteal in
Reference20, the current J and magneic flux B canbe obtaned throughait the region; the spatid
distribution of the Jouleheatingandthe compmentsof the Lorentz force thenfollow directly. The
numeical soluion to this problemwasgeneatedon mesh 2 with constantmaterialpropeties. Two
types of numerical soluion were usedin the evaluaion. In the first case labdled V7, 4,,4., the
electric potential field within the ingot was computel basedon the specfied currentflux at the
bourdary. The current densities from this soluion were then used as sour@ terms for the
magnetostéic field computdion. A secom solutionmethod Jabded 4,., 4., usedthe analyticsolution
to providethe currentdensitiesfor the mageticfield; the electricpotentialwasnot computa. Shown
in Table Il are a numker of quantities that illustrate the quality of the numerical simulafons.
Alterationsin the mes densityhad a relatively smdl effect on the solution, sincethis problemis
mack up of a seriesof lineardiffusion equationghataregeneraly undemandigwith respecto mesh
refinement.

4.2. VAR simulations

Following the selectionof an adequatamesh,severalcoupledVAR simulationswere complded.
The problem of interest consideed most of the condtions describedin the individual flow and
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Table Ill. Comparisonof computedelectromagneticfield variableswith analytic

solution
Field variable Analytic solution V,A,,A, solution A,,A, solution
Maximum V 9-444 9-420 —
Maximum J, 1264 X10° 1263 X 10° 1263 X 10°
Maximum J, —2:172 X10° —2-141 X10° —2-197 X10°
Maximum By 69-06 7206 72-09
Maximum Q; 3-039 2-936 2-:939
Maximum F., 9217 8662 8730
Maximum F, 9337 8953 8961

electromagndt solutions of the previoussecton. The ingot materialwasa U—-6 wt.% Nb alloy that
was nominaly processé at a current of 6 kA and a melt rate of 740kg hr . A seriesof three
computationswascompletedwith the fraction of total current passimy throughtheingot providingthe
contolling independat variable for the simulations. Current fractions of 60% (3-60 kA), 71%
(4-25kA) and 85% (5-10 kA) were sekcted, with all othe paraneters remainirg fixed. The
sepaation point wascharacerizedby a shrinktemperatire of 800 K. Theseexampeswereintendel
to demonsgtate the viability of the methodfor realistic processingcondtions; an in-depthstudy of
processingparaméers and comparisorwith experimentwill be developedn a separag report.

The solution strategyfor the couplked problem involved a sequ&ce of steadysolutions, with
varioustermsin the momentim andenegy equatons beingscaledto provide control of the solution
process.Unlike the buoyancy-ony testproblem of the previoussectio, the Grashofnumber wasnot
useddirectly as an embeddng paraméer. Rathe, the viscousand thermal diffusion terms were
multiplied by independentscalefactors that started with valuesof seveal hundrel andwerereduced
to unity over the cour® of the solution. The soluion strategywas designedto keepthe primary
forces, Lorentz and buoyang, in balance as much as possible. To start the soluion process, the
Hartman and Jouleheatingnumberswere setto zeroandall othernon-dimensionalquantties were
setto their full values;the scalefactors weresetto ‘large’ values.The heatflux to the surfacewas
adjusted to produe a small melt pool and a reasonablesurfacetemperatire. This solution was
convegedusing a combindion of Picard andNewtoniteration. A seriesof stepswith increasng heat
flux anddecreasingcalefactors led to alargermelt pool. The couplingwith the electromagnet field
wasthenintroduced with fixed flow paraméers and non-zro Hartmanand Jouk heatingnumkers.
Cornvergenceat this point agan required a combindion of Picardand Newtoniteration with varying
amauntsof relaxaton. The credion of a seconl (Lorentz) convedion cell wasa major changein the
soluion pathandin sone casesrequiredmore than 20 iterations. When the two-cell solutionwas
eshblisheda seriesof stepswith deceasingscalefactors led to the final convegedstate.During the
soluion sequencehe Lorentz forcesand Joule heatingwere updatedperiodically througha PVM
transer betwee the two codes. The mod recent temperatire field was transferred to the
electromagndt code and a new force and heatingdistribuion were returnal to the flow code.In
some cases as the viscosity/condudivity scak factors were redued, the thermal convedion cell
would beginto dominatethe flow and,if unchecled,would eliminatethe Lorentzcell. Reintroduction
of alargerLorentzforce (more currentthroughtheingot) at this pointin the continudion pathwould
normally leadto divergerte of the solution Increasesn the Lorentzforce could only be made when
both cells were present.

Shownin Plates3-5arecontbour plots of the flow field andtempeaturefield for the threedifferent
currentinputsto theingot. The plot scaksfor the streanfunctionandtemperatire arethe sane for all
three case so that the changesn magnitudeof the two cells can be readily seen.As the electric
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current density increases,the clockwise-rotatng Lorentz cell strenghens and grows in size.
Corversely the counerclockwvise rotation of the thermally driven cell decreasseandthe cell pair is
pusheddownwardsinto the slightly growing melt pool. Thetempeaturefield is horizontaly straified
within the melt pool for all threecurrentlevels. At the highest currentthe Lorentzcell is sufficently
strorg to perturbthe straification at the centeline andcredae anenlagedregionof high-temperatire
melt. Notethatin all threecase the maximum tempeatureis located off the ingot axis, throughthe
surfacetemperatire within the melt pool is nearly uniform.

Theextent of the mushyzonehasbeenindicatedin eachstreamfunctia plot. At the highestcurrent
leve (Plate 5) the streantines within the mushy zone have beenleft visible to show the relaive
magnitude of the flow within this region. The upper half of the musy layer has a fairly large
permeability and a clear effect of the flow can be identified. Lower in the mushy zone the
permeability deceasesandthe fluid motionis slowedconsideably. The mudhy zoneintersectsthe
top surfaceof the ingot, indicating the presenceof a skull or solid shelf nextto the crudble; this is
consstentwith obsewation.

Shownin Plates6 and 7 are someof the electromagnét fields that correspad to the highest
current level. Fields for the othe two case are similar in spatid distribution but with reduced
magitudes The current lines show the obvious effect of having the ingot grounded above the
shrirkage and insulatedbelow the separatiorpoint. The changein bounday condtion at this point
leadsto singular behaviourin the JouleheatingandLorentzforce. This artefact doesnotinfluenceor
complicate the simulafon of the melt pool, since separatioroccursin the solidified regionandthe
singularity is confinedto a heatconductia region.

5. CONCLUSIONSAND COMMENTS

The objective of the presentwork wasthe developmentf a realisticnumericalsimulation capalility
for vacuumconsunable are remelting problens. The methodsoutlined here consder most of the
major featuesinvolvedin alloy processig. Theseincludethe flow in the melt pool andthe mushy
zone,heattranskerthroughouttheingot andthe effectsof the electromagndt environment.Thefinite
element methodsused for the non-isothermalflow field and electomagnéics were developed
sepaately andcoupled,for the presenapplicaion, throughthe PVM software. This hasprovento be
a flexible and effective methodfor generaing a multiphysicssimulation capalility.

Thoughthe currentmethodis capalte of producingresultsthat correspad at leastqualtatively
with real procesaig condtions,the modd developnentis not complete.Of majorimportanceis the
inclusion of solue transpot and the prediction of macroggregation. The addiion of Marangoni
effects and the capability to examine electomagndic stirring is also viewed as important A
refinament of the thermal portions of the model, including enclosue radiaion and a better
representatia of the arc, would relieve a grea deal of the uncertanty presentin the heattranser
predictions. The presentformulation should be coupled to a solid mechants solution that would
predict the shrinkage point and not rely on an assumedtemperatire for the determiration of
sepaation. Finally, the solution strategy is uncertain and tedious becauseof its reliance on
coninuation and the preenceof large non-dmensimal paraneters.Sometype of automaion or
adapivity would be a welcone developnentin this area thoughthis is a long-standng problemin
computationalfluid dynamics. This uncertan pathto a soluion certainy needsto be improved if
simulation is to be usedfor routine industrid applicatians.
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